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Abstract— This paper investigates both analytically and numerically the effect of  narrow-band frequency modulated (NBFM) force  on 
horseshoe chaos in double-well Duffing-vander Pol (DVP) oscillator. Using Melnikov method an analytical threshold condition for the 
prediction of onset of horseshoe chaos is obtained. Melnikov threshold curves are drawn in different external parameters space. Parametric 
regimes where suppression of horseshoe chaos occurs are predicted. Analytical predictions are demonstrated through direct numerical 
simulations. Starting from asymptotic chaos we show the recovery of periodic motions for a range of values of amplitude and frequency of 
the external  force. Interestingly suppression of chaos  is found in the parametric regimes where the Melnikov function does not change sign. 
Various routes to chaos and crisis are found to occur due to the NBFM force. Numerical investigations including computation of stable and 
unstable manifolds of saddle, Maximal Lyapunov exponent, Poincarè map and bifurcation diagram are used to detect horseshoe chaos. 
 
Keywords— Chaos, Controlling chaos, Duffing-vander Pol oscillator, Horseshoe chaos, Homoclinic bifurcation, Narrow-band frequency 
modulated force,  Melnikov method,  
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1 INTRODUCTION 

  
Over the  past years  the study of  effect of  different  
periodic forces on nonlinear systems has received  much  
attention. The study of effect of  such  periodic forces will  
be helpful to choose a suitable external  drive  in  creating 
and controlling  nonlinear  behaviours. In  recent  years  
there are  reports  on the effect  of  different  forces  on  
certain  nonlinear  phenomenon [1], [2], [3], [4], [5], [6], [7], 
[8], [9], [10].  It  is  also  important to explore the utility and  
applicability of  analytical  methods  such  as  multiple-scale  
perturbation  method  and  Melnikov  method  to  the  
system  driven  by  periodic forces  other  than  sin tf  or 

cos tf . 
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   Melnikov technique [11], [12] is one of the few analytical 
methods available for determining the existence  of  chaotic  
motion  in  near-integrable  systems  subject  to dissipative  
time-dependent  perturbation. The  main  idea of  Melnikov  
technique  is  to  find  a  function  that  can  measure  the  
distance  between  stable and unstable manifolds for a 
saddle of a perturbed system. If the function vanishes for a 
certain bifurcation  parameter  value,  then  stable  and  
unstable  manifolds will  intersect  each  other  away  from  
the saddle  points  or  points  in  the  Poincarè  section  and  
thus  forming  a  type  of  Smale’s  horseshoe  mapping 
leading  to  chaos.  Recently,  this  method  has  been  
applied  to  certain  nonlinear  systems [6], [7], [13], [14], 
[15], [16], [17], [18], [19], [20]  
 

In this paper we investigate analytically and 
numerically, the effect of Narrow-Band Frequency  
Modulated  (NBFM)  force  in  double-well  Duffing-van 
der  Pol oscillator equation  

where f  is  the  unmodulated  carrier amplitude, g  is the 

modulation index, ω  and Ω  are  the two frequencies of the 
 external force. The motivation  for our  interest  in  this  
system  is  that  it  has  wide  range  of applications  in 
physics and biology. It describes the dynamics  of  charged 

2 2 3(1 ) (cos sin sin ), (1) p t g t tx x x x x f
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density in plasma of a rf gas discharge. It exhibits well 
developed chaos in the parameter space [21], [22], [23], [24]. 
The parametrically driven case of  (1) in the absence of 

external forcing 0, 0f g  was studied numerically by 
Zielinska et al. [25] who found that the system exhibits 
chaotic behavior. Recently, Balachandran et al. [26] 
designed  and  investigated  a new higher order 
autonomous vander Pol-Duffing oscillator based on fifth 
order hyperchaotic circuit to improve secure 
communication. Lai et al. [27]  investigated the possibility 
of suppression of jamming and stochastic resonance by 
both narrow-band and wide-band frequency modulated 
signals in FitzHugh-Nagumo oscillator and Lorenz 
equations. Our objective is to study the effect of NBFM 
force on horseshoe chaos using both numerical and 
analytical techniques. In our present analysis we use 
Melnikov analytical method to study the influence of 
NBFM force on homoclinic orbits. 
 

The remainder of the present paper proceeds as 
follows. In  the next  section  we discuss  the application  of  
the Melnikov method and obtain the Melnikov function for 
the system (1). The external force has two frequencies  ω  
and Ω .  In section 3  we consider the case of ω=Ω   and  
derive the threshold condition  on the parameters f and g  

for the transverse intersection of homoclinic orbits. Then 
we plot the Melnikov threshold curve  with g=0  and 0g

in the parameter spaces ( , )f  and (g,Ω(=ω)).  The 

analytical predictions are  demonstrated through direct 
numerical simulations. Starting from horseshoe chaos  we 
show the possibility of its suppression. The case of  is 
also discussed at the end of this section. In section 4 we 
analyze numerically  the  periodic and chaotic behaviours 
of the system (1).  We show the examples of period- 
doubling,  intermittency  and  quasiperiodic routes to chaos 
for some specific sets of values of the parameters. Finally, 
section 5 contains  conclusion. 

 
2  Melnikov analysis 
 
We are considering here the perturbed DVP oscillator (1) 
with the NBFM force , which is given by  

               
 

where  is   a small parameter, 2>0  and 0.  We next 

derive the fixed points and the phase portrait 
corresponding to the unperturbed system. If we let =0,  
the unperturbed system can be written as 
 

               
   

                                                     
 
 
 
 
 
 
 
 
 
 
 
 
which corresponds to an integrable Hamiltonian system 
with the potential function given by  

                                                              
 
 
Shape of the potential function is shown in Fig. 1(a)  and 
whose associated Hamiltonian function is  

                             
 
By analyzing the unperturbed system, we can observe that 
there are three different equilibria one saddle fixed point 
( , ) (0,0)x* y*    and two centre type fixed points 

( ,0).  The two homoclinic orbits which connect 

saddle to itself are given by  
 

 

 where τ=t - t0.  Stable manifolds ( )Ws  and unstable 

manifolds ( )Wu of homoclinic orbits are indicated in Fig. 

1(b).  Periodic orbits are nested within and outside the  
homoclinic orbits. For =0,  the stable and unstable 
branches of homoclinic orbits join smoothly. When the 
dissipative perturbation is included the stable manifold Ws  

and the unstable manifold uW  do not join. However, above 
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Figure 1. (a) The two-well potential function for the unperturbed 
system (3). (b) Phase trajectories of the unperturbed system (3). The 

stable ( )Ws and unstable ( )Wu  parts of homoclinic orbits connecting 

saddle to itself are indicated. The analytical expression for the 
homoclinic orbits is given by  (6). 
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certain critical amplitude and frequency of the external 
periodic force, transverse intersections of Ws and uW occur. 

In order to apply the Melnikov method, in general, we 
rewrite the given equation of motion into the following 
standard form  

                                
 
 
where   g1  and g2  are periodic in t    with period T .  

Further the unperturbed system [ =0 in (7)] should 
possess atleast one hyperbolic fixed point and an integrable 
separatrix solution passing through the point. For the 
standard form of the  (7), the Melnikov integral is  

                           

 
For the DVP (2)   the Melnikov integral  (8) works out to be  

                  
 

       
             

where 
 
 

 
 
 
 
 

 
From the above relations we can obtain the 

condition for transverse intersection of stable manifolds  

sW  and unstable manifolds ( )Wu  that is  ( )0M t  to 

change sign at some .0t   

 
3  Analytical and Numerical results  

 
In this section,  we analyze the effect of NBFM with the 
frequency  and .   
 
3.1 Effect of NBFM force with  
 
We analyze the occurrence of homoclinic bifurcation and 
onset of chaos for three different cases separately, such as 
(i) 0g  and f  is varied, (ii)  g  fixed and f   varied and 

(iii)  f  fixed and g  varied.  For g=0   the system is driven 

by the sinusoidal force cos tf  and Melnikov function 

becomes  
           

 
From the above relation we can obtain the threshold curve 
for getting horseshoe chaos in the parameter space  
( , , , ).p f  For example, fixing  , , ,p   we have the 

following threshold curve   in the ( , )f  plane 

              

 
 
 
 
 
Equation (11) is the necessary condition for the existence of 
horseshoe chaos. The sufficient condition requires the 
existence of simple zeros of  ( ).0M t   When (11) becomes an 

equality, the zero of M   is nontransverse  and this 
corresponds to tangential intersection where  0d M dt

at 0t t .   

     In Fig. 2, we have plotted f  as a function of the 

frequency  for  1.0, 5.0, 0.4p and g=0.  In  the  

parameter region, below the threshold curve  no transverse 
intersection of stable and  unstable  manifolds of the saddle 
occurs and above the threshold curve transverse 
intersections  of stable and  unstable manifolds of  the 
saddle occur.  Just above  the  Melnikov threshold curve 
onset of cross well chaos is expected. We have verified the 
above analytical prediction by direct numerical simulation 
of the system (1). As an example Fig. 3 shows the 

numerically computed  Ws and uW   of the saddle in 

Poincarè map for f = 0.075 and 0.2f    with  ω=1.0.    The 

unstable manifolds are obtained by  integrating (1)  in 
 

 
 
 
 
 
 
 
 
 
  
 

0 0( ) sin . (10)M t A B tf

(7 )

(7 )

( ) ( , ),1 1

( ) ( , ).2 2





a

b

t

t

x x,y x,y

y x,y x,y

f

f

g

g

'
( ) [ ]exp . (8)0 1 2 2 1

0

t
M t g g dt d

f f
f f

x y

( ) sin sin( )0 0 0

sin( ) , (9 )0

M t A B t Cg t

Dg t a

f

3 2
4 4

1 , (9 )
3 5

p
A b

2
43

2 2 1
5

cosh 2 . (11)
3

p

Mf f

2 sec ( 2 ), (9 )

2 ( )sec ( ( ) 2 ), (9 )

2 ( )sec ( ( ) 2 ). (9 )

B h c

C h d

D h e

Figure 2. Threshold curve for horseshoe chaos in the ( ,ω)f plane 

for 1.0, 5.0, 0.4p  and g=0 . Above the curve 
transverse intersections of homoclinic orbits occur. 
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 the forward time for a set of 900 initial conditions chosen  
around the perturbed saddle point. The saddle manifolds 
are obtained  by integrating the (1) in reverse time. For     f =  
0.075 the two orbits are well separated for which the 
Melnikov distance is always positive (Fig. 3(a)). For  

0.2,f (Fig. 3(b)) we can clearly notice transverse 

intersection of the two orbits  where the Melnikov distance  
oscillates between positive and negative values. For   ω=1,  
analytically predicted Melnikov threshold value is 

0.1132.Mf The corresponding numerical value is found 

to be  0.125Nf ,  which is greater than Mf   value as 

expected. For  0.125f   asymptotically periodic motion is 

observed. Onset of chaotic motion is observed at 0.125f  

at which the Melnikov distance becomes zero for some 
t=t0

. Thus for 0.125f   it is possible to have either 

asymptotic chaos or  transient chaos followed by 
asymptotically periodic motions. 

Now we consider the effect of NBFM force for the 
second case, that is, by fixing the value of g  and thereby 

varying f . For   ω=Ω , we have =0D  in (9(e))   and the 

Melnikov function is given by (9(a)) becomes  
                                
 

The necessary condition on  f  for ( )0M t  to change sign is  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
where the superscript signs  ‘+’ and ‘ ’ corresponds to the 

homoclinic orbits W and W    respectively. In general, for 
arbitrary values of  and ,    the above condition is not 

sufficient to ensure the existence of simple zeros  of ( )0M t   

in (9).  However the condition  (13)  is sufficient if the 

frequency ,  is in resonance with , that is  v u  

( )u v     where  v and u     are some positive 

integers. 
 Fig. 4 shows the Melnikov threshold curves for horseshoe 
chaos in  ( , )f  plane for  , 1.0, 5.0, 0.4p  

and g=0.1.  In the ( , )f  parameter space transverse 

intersections of both orbits, that is sW and uW   and sW  

and uW   occur in the regions a  and e . That is in these 

regions  both   ( )0M t and  ( )0M t   to change sign.   

 
 
 
 
 
 
 
 
 
 
 
 
 

   While one can expect transverse  intersections of  sW and 

uW in the region b  . This implies that in this region ( )0M t  

alone changes sign  and the sign of  ( )0M t   remains same. 

In the region d  transverse intersection sW and uW   alone 

occur since in this region only ( )0M t  changes sign. Thus 

horseshoe chaos occur in the entire ( , )f  parameter 

space. However in the region c ,  only   ( )0M t and  ( )0M t   

do not change sign and is an indication of no tranverse 
intersection of orbits of saddle. For   1,   when the  

forcing amplitude f  is increased  from  a value in the  

region e  of both orbits occur for 0.156.Mf f  The above 

analytical transverse intersection of stable and unstable 

parts of  W  and W   occur for '
0.156;Mf f  

intersection of stable and unstable manifolds of  W alone  

occur for  
' '

0.156 0.07;M Mf f f   no transverse 

intersection of  manifolds of W  and  W occur for  
'

0.07 0.07;M Mf f f   transverse intersection of 

( ) sin sin2 . (12)0 0 0M t A B t Cg tf

( ) , (13 )
( )

'
( ) (13 ).

M

M

A C g B a
or

A C g B b

f f

f f

Figure  3.  Numerically computed stable and unstable manifolds of 
saddle for the DVP oscillator (Eq.1) in the x, y  plane for  f = 0.075 

and 0.2. The values of the other parameters are 

1.0, 5.0, 0.4, 1.0p  and g=0 . 

Figure 4. Melnikov threshold curves for horseshoe chaos in 

( , )f  plane for 1.0, 5.0, 0.4, 1.0p  and 

g=0 .1. 
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Figure  7.  Melnikov threshold curves for horseshoe chaos in 

( , )g  plane for (a) 0.08f and (b) 0.2.f The values of the 

other parameters are 1.0, 5.0, 0.4p and . The 

dashed curve represents transverse intersections of orbits of saddle.  

manifolds  of  W  alone occur for 

0.07 0.156M Mf f f  and transverse intersection of 

both orbits occur for 0.156Mf f . The above analytical  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
results  are verified by direct numerical simulations of DVP  
(1). As an example, in Fig. 5,  we have shown the stable and 
unstable orbits of saddle in the Poincarè map for six values  
of f chosen  in the regions , , ,a b c d and e  with 1  

and  g=0.1. Transverse intersections of stable and 

unstable branches of both the homoclinic orbits occur for 
0.25f  which  fall in the regions a and e .  For  

0.125f  (corresponding to regions b and d ) we see 

transverse intersection of homoclinic orbits at only one 
point. When 0.10f   (in region c ) no transverse 

intersection of the orbits occur. The stable and unstable   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Orbits are well separated. These numerical results agree 
well with the theoretical predictions. 
 In order to know the nature of attractors of the system near 
the horseshoe threshold curve, we have further numerically 
investigated the (1)   and the onset of chaos therein. Fig. 6(a) 
shows the bifurcation diagram where we  have plotted 
xvs f for every period of the external force after omitting 

the initial transient evolution. The maximal Lyapunov 
 
 
 
 
 
 
 
 
 
 
 
 
exponent  ( ) is computed using  the algorithm given in the 
ref. [28] and is reported in Fig. 6(b). In the regions b  and d  

of Fig. 4  where intersections of the orbits of  W    and 

intersections of the orbits  of  W  alone occur, respectively, 
the long time evolution is found to be periodic. From the 
bifurcation diagram the onset of chaos are found to occur at 

0.1379,f  whereas the Melnikov threshold values for 

transverse intersection of stable and unstable branches of 
the both homoclinic orbits are  0.131. The analytical 

prediction is in good agreement with the actual numerical 
analysis of the system.  
 
   Then we consider the effect of NBFM force for the third 
case, that is, by fixing the value of f   and thereby varying 

g.  For a fixed value of f , the necessary condition on  g  for   

( )0M t  to change sign is  

 
 

 
Fig. (7) shows the Melnikov threshold curves for horseshoe 
chaos in the  ( , )g   plane for 0.08f  and 0.2f  with 

.  The values of the other parameters are 
1.0, 5.0and 0.4.p  When  g=0and 0.08f   as  

shown in Figs. 2  and 3  no transverse intersection of 
homoclinic orbits  occurs. However as g  is varied  from 

( ) , (14 )

( ) '
( ) . (14 )

g g A B C aM
or

g g A B C bM

f

f

Figure  5. Numerically computed stable and unstable manifolds of 
saddle for six values of f . The values of the other parameters are 
fixed at 1.0, 5.0, 0.4,p  and g=0 .1. 

Figure  6. Bifurcation diagram and the corresponding maximal 
Lyapunov exponent diagram for the DVP oscillator driven by  
the NBFM force with 1.0  and g=0.1.   
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zero, above certain critical value horseshoe chaos occurs. In 

the regions a  and e  both  ( )0M t and  ( )0M t  change sign 

and  the transverse  intersections  of  stable and unstable 

parts of  W   and W  occur. Transverse intersections of  

sW and uW   alone happen in the region b . In the region 

,c  no transverse intersections of  both stable and unstable 

manifolds of saddle occur. In the region d  transverse 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

intersections of  uW  and sW  alone take place. The above 

analytical results are also verified by  direct simulation of 
the system (1).  Fig.  8 shows the part of stable and unstable 
orbits in the Poincarè map for  the  six values of g  chosen 

in the regions , , ,a b c d  and e   with    1 and  
0.08.f  Transverse intersections of both the homoclinic 

orbits occur for  g=0.6  which is above the threshold value 

0.402.Mg  This value of g  falls in the region a . For  

0.25f  (corersponding to the region b ) we notice the 

tranverse intersections  of  sW and uW alone at two places. 

When g=±0.01 (in the region c ) no transverse 

intersections of orbits occur.  For 0.25g=-  as expected we 

see only the transverse intersection of  sW and uW .  

Intersections of both the homoclinic orbits are clearly seen 
for g=-0.6   which falls in the region e . When g=0 , the 

Melnikov threshold values for transverse intersection are  

0.1132Mf . We fix f  at  0.2  above the threshold value 
0.1132   and study the effect of   the modulating term  by  
varying g .  Fig. 7(b) shows the Melnikov  threshold curves 

for  transverse intersections of homoclinic orbits. For 

0.2f and g=0   transverse  intersections of stable  and  

unstable  manifolds  of  saddle  This is Melnikov  threshold 
occur  for  a  range  of  values  of (see Fig. 3). curves for  
transverse intersections of homoclinic orbits. For 0.2f

and g=0   transverse  intersections of stable  and  unstable  

manifolds  of  saddle  occur  for  a  range  of  values  of 
(see Fig. 3). This is represented by the dashed line in Fig. 
7(b). When g  is switched on, even for small values of g , 

the transverse intersections suddenly disappear. That is,  
horseshoe chaos is suppressed. This occurs for a range of 
values of g . In region c , no transverse intersection of 

homoclinic orbits occur. In regions b  and d  tranverse 

intersections of W  and W  take place. In the regions a  
and e  intersections of both the homoclinic orbits occurs. 
 
  Finally, we consider the effect of NBFM force for the case 
of  that is u v.  In general for arbitrary values 

of  and ,  conditions similar to Eqs. (13) or (14) cannot 

be written to ensure the existence of simple zeros of ( )0M t  

in  (9(a)). However, the occurrence of horseshoe chaos can  
be studied numerically by measuring the time M   elapsed 

between two successive transverse intersections.  M  can 

be determined from (9). In Fig. 9 we have plotted 1 M as a 

function of ,  for 1.0, 1.0,  

5.0, 0.4, 0.08p f  and  g=0.1.  Continuous curve 

corresponds to positive sign while dashed curve 
corresponds to negative sign in   (9).  Horseshoe chaos does 
not occur when 1 M   is zero  and  it occurs in the region   

where 1 0.M   In Fig. 9, for  0.08f , both   1 M and 

1 M  are zero. (that is M   is infinity) at   0.875,0.95   

and 1.0.    This implies that horseshoe chaos does not occur 
for   0.875,0.95and 1.0. For other values  of  , both  
 
 
 
 
 
 
 
 
 
 

Figure 8. Numerically  computed stable and unstable manifolds of 
saddle for 1.0, 5.0, 0.4, 1.0p and 

0.08.f   

 

Figure 9. Variation of  1 M versus ,  for 1.0  and 0.08.f  

Continuous curve is for positive sign and dashed curve is for negative 
sign of ( )0M t  given by Eq. (9). 
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( )0M t  and ( )0M t  oscillate and hence 1 M  are  non  

zero. These results are verified numerically. 
 
 
4 Numerical predictions of periodic and        
chaotic behaviours of the system (1) 
 
    In this section for some specific sets of values of control 
parameters  we show the occurrence of period  doubling, 
intermittency and quasiperiodic routes to chaos and 
suppression of chaos in the presence of NBFM force. 
 

   We fix the values of the parameters  as  
1.0, 5.0, 0.4p   and  1.0. Fig. 10(a) shows 

the bifurcation diagram drawn between x vs f   and  

g  is set to zero.  As f  is increased from zero, the period-1 

solution exists in the range 0 0.108695f    and then it 

loses its stability at the critical values of   

1 0.108695f f  giving birth to  (or bifurcating into) a 

period-2T orbit. System-1 then undergoes  further period-
doubling bifurcations as the control parameter f  is 

smoothly varied. For example, period-2 orbit exists in the  
range  0.108695 0.109483f  and it  becomes unstable at 

0.109483f  giving birth to a period-4T orbit. This cascade 

of bifurcation continues further as 8T, 16T… orbits and 
accumulates at 0.110047.Cf f  At this critical value of 

f onset of chaotic motion occurs. When the parameter f  is  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

further increased from 
Cf , the dynamics of the interval 

0.110047 0.25f    is more complicated and intricate. 

This interval of f  is not fully occupied by chaotic takes 

place at different critical values of f . Particularly the 

asymptotic motion consists of chaotic orbits interspersed by  
periodic orbits (windows), period-doubling windows, 
band–merging and sudden-widening chaotic attractors and 
intermittency route to chaos. For clarity, band- merging, 
orbits alone, but many fascinating changes in the dynamics  
sudden-widening bifurcations and intermittency route to 
chaos are shown in Fig. 11. At 0.25f , chaotic motion 

suddenly disappears and the long time motion settles to a 
periodic behavior. The influence of the control parameter 
f  on the dynamics for the two fixed values of  g  namely  

g=0.1  (periodic region) and 0.3  ( chaotic region) is also 

studied. The effect of f  can be clearly seen in the 

bifurcation diagrams Figs. 10(b) and 10(c). Here again 
suppression of chaos is found for certain range of values of  
the control parameter f . 

 
   Next we show the effect of the control parameter g  by 

fixing the value of f . Fig. 10(d) shows the bifurcation 

diagram obtained by varying g  from 0 to 1 where f  is set 

to zero. The long-time motion settles to a periodic behavior  
and chaotic motion appears in a small region. The effect of 
gcan be clearly seen in the bifurcation diagrams Fig. 10(e) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
and 10(f) for another two fixed values of f  that is, 0.1f  

(lies in the periodic region) and 0.3  (lies in the chaotic 
region). Here again suppression of chaos is found for 
certain range of values of the control parameter g . 

Fig.10. Bifurcation structures for the system (1) for 

1.0, 5.0, 0.4, 1.0.p
 

 
Figure 11. (a) Band-merging (b) sudden-widening and (c) 
intermittency route to chaos. The values of the other parameters 
are 1.0, 5.0, 0.4, 0.0, 1.0.p g  
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5  Conclusion 
 
In the present paper we have studied the effect of NBFM 
force on horseshoe chaos and routes to asymptotic chaos in 
a linearly damped Duffing-vander Pol oscillator both 
analytically and numerically. Using Melnikov analytical 
method we obtained the threshold condition for onset of 
horseshoe chaos that is transverse intersection of stable and 
unstable branches of homoclinic orbits. Threshold curves 
are drawn in different parameters space. We have verified 
the analytical predictions through numerical simulation. 
Near the Melnikov threshold curve, onset of chaos is 
observed. We discussed the effect of other parameters such 
as , gf and ,     on the dynamics of the system (1). It is 

important to study the effect of wide-band frequency 
modulated force on horseshoe and asymptotic chaos in 
DVP oscillator. This will be investigated in future. 
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